
ShuttleService™

Scalable Big Data Processing Utilizing Cloud Structures

A Tick Data Custom Data Solutions Group Case Study

Robert Fenster, Senior Engineer and AWS Certified Solutions Architect

Neal Falkenberry, President

June 2015

Tick Data Inc.- ShuttleServiceTM June 2015

Page 1 of 14 Copyright© TICK DATA, LLC

Tick Data Custom Data Solutions™

 Data Processing Services (“ShuttleService™)

ABC Manufacturing, Inc.

ABC, Inc. (“ABC”) is a company that generates terabytes of real-time, asynchronous data describing

inputs and outputs to its business process. Tick Data was asked by the company to parse this data

and create one second summary statistics (as defined by ABC) for later in-house use in optimization

of their processes. For reference to financial market data participants, the process is similar to

parsing through trade and quote data to build one second summaries that include open, high(max),

low(min), close, VWAP, spread, etc. In ABC’s case the calculations were standard statistical measures

but could have been proprietary algorithms protected in executables, dlls or other methods.

This paper will describe the methodology deployed by Tick Data in this assignment. In this case ABC

did not have an existing Amazon AWS infrastructure. ABC’s data was transferred to Tick Data on

physical media, uploaded to Tick Data’s AWS infrastructure, processed, output transferred to ABC,

and original input data deleted. Field names in the original data were masked to further protect

ABC’s data and processes. At no point did ownership of the data transfer to Tick Data.

Turning Terabytes of Raw Data Into Gigabtyes of Information

Introducing Tick Data’s ShuttleService™

ShuttleService™ refers to Tick Data’s Map/Reduce process whereby data is divided into smaller

blocks, distributed across Amazon EC2 instances for processing, with resulting output assembled and

aggregated to a common location. The intelligence behind ShuttleService™ is the ability to distribute

this processing across any number of CPUs where each CPU initializes itself, receives instructions for

its portion of the processing, is monitored, and shuts down upon completion in order to minimize

computing costs. The process makes effective use of Amazon spot pricing for CPU power to further

manage costs.

This paper describes ShuttleService™ and documents the ABC project in detail.

Tick Data Inc.- ShuttleServiceTM June 2015

Page 2 of 14 Copyright© TICK DATA, LLC

Contents

Overview 3

Getting Started 3

Selecting the Right Instance Type and Size 5

Recovering from Failure 6

Improving Performance and Cost Efficiency 6

Scaling Up 7

Reducing the Risk of Change 9

Responsive Design 10

Monitoring 10

Costs 13

Summary 14

Tick Data Inc.- ShuttleServiceTM June 2015

Page 3 of 14 Copyright© TICK DATA, LLC

Introduction
Tick Data, Inc. migrated to Amazon Web Services (AWS) from a traditional data center in

2013. As the leader in cloud data services, Amazon has created a bottom layer IT

infrastructure that can be leveraged using AWS constructs to simultaneously process vast

quantities of data quickly, cheaply and therefore efficiently. Tick Data performs all of its daily

processing on millions of global financial market records within this environment and

distributes that data to customers around the world.

ShuttleService™ evolved from the need to process and customize multi-terabyte data sets for

customers. It leverages AWS’s Elastic Compute Cloud (EC2), Elastic Block Store (EBS), Simple

Queue Service (SQS), CloudWatch, Load Configurations, and Auto Scaling Service to help

break large workloads into smaller tasks that can be independently processed across

multiple EC2 instances. In short, ShuttleService™ is the commercialization of Tick Data’s

internal distributed processing plant made available for large data sets across many different

industries.

ShuttleService™ can be tuned to deliver data quickly by expanding the size of the processing

cluster, made cost effective by using spot EC2 processing power over reserved power, and

many other configurable tradeoffs related to the time and cost/benefit of parsing data. In the

case of ABC, the company was interested in a cost effective solution (spot over reserved)

where approx. 50tb of data would be processed over 5 days.

Overview

ShuttleService™ utilizes a producer/consumer model. The producer breaks the workload

into small independent tasks. The producer creates a right-sized EBS volume and attaches

that volume to the producer’s EC2 instance. For ABC’s assignment the producer created 100

gb volumes with attention paid to edge effects around break points in the data. The producer

process moves the work object onto the EBS volume. Once the 100 gb data sub-sets are

stored on the EBS volume, the EBS volume is then un-mounted and detached from the

producer’s EC2 instance. The volume id (primary identification information) is then pushed

on the SQS work queue.

An AWS CloudWatch™ alarm monitors the depth of the SQS work queue. If the queue depth

exceeds a threshold, the Auto Scaling Service triggers the creation of consumer(s) to process

the data. Consumers are only created when there is a workload. Hence, ABC was not paying

for processing power until needed. The size of the consumer fleet is controlled by the auto

scaling service to ensure it is neither too small (work sits on the queue, not being processed)

nor to large (running instances with no work to process).

A consumer scans the queue and pops a message from the work queue. It attaches the volume

to the consumer instance, mounts the file system and begins to process the work items.

The consumer reads the queue in such a way that the message (volume id) is not visible to

other consumers. If the message is not processed in a configured time frame, the message

Tick Data Inc.- ShuttleServiceTM June 2015

Page 4 of 14 Copyright© TICK DATA, LLC

will return to the queue for other consumers to see. Example: if the consumer instance is

terminated during processing, the message will return to the queue for continued processing.

When the consumer completes its task it places the completed work product back onto the

EBS volume, in a completed area, un-mounts and detaches the volume. The queue message

is then permanently removed from the work queue and placed on a completed queue.

Depending on configuration, the consumer will then either go back to the work queue for

additional work, or self-terminate. It is this ability to self-terminate that enables

ShuttleService™ to minimize computing costs.

What Data Is Being Processed?

Tick Data coded ABC’s statistical routine in Java. The code was tested thoroughly and

accepted by ABC prior to production. ABC could have provided its own script, an executable,

or a callable library that encapsulated its IP for processing. ABC sought to have the real-time,

millisecond time stamped data aggregated into one second intervals. Standard statistical

measures within each second were also calculated. Field names were masked to further

obfuscate the data that remained at all times the property of ABC. The resulting output

contained 29 fields and appeared as (partial):

Date, Time, Field1 Avg , Field1 Max, Field 1 Min, Field 1 StDev, Field 1 Mode, ….

ABC then used this output for internal optimization work. Tick Data, Inc. was not privy to

that work nor need be. In fact, we never knew the type of data that was being processed.

Additional Detail

Getting Started

The first step in the implementation was to define the producer that breaks down work items,

and the consumer that processes the work items. Company ABC provided Tick Data with a

basis for the smallest work item and the library to process the work items. Additionally, ABC

provided estimates for how fast the library could complete a work item. Tick Data used the

information provided on work item size and processing time to determine the optimal

amount of data to place on each shuttle.

Selecting the Right Instance Type and Size

Care should be made to test the producer and consumer against different instance types and

sizes. I/O bandwidth, EBS optimization, memory, vCPUs and cost must be considered. The

instance type for producer and the consumer have different considerations.

Tick Data Inc.- ShuttleServiceTM June 2015

Page 5 of 14 Copyright© TICK DATA, LLC

For the producer, the focus should be Instance Type and Size that supports high I/O

bandwidth and EBS optimization. When considering the AMI for the producer, pv

(paravirtual) vs. hvm also need to be considered. pv instances can support up to /dev/sd[f-

p][1-6] (11*16=176) volumes. hvm instances can only support /dev/sd[f-p] (11) volumes.

To best support the ShutteService™, the producer should be able to generate more than one

shuttle at a time, and therefore would need 1+ devices to add attach a volume.

For the consumer, processing power and memory may be more important that high I/O

bandwidth. Additionally, while there are one or maybe two producers, the number of

consumers could be a very high number. Ephemeral drives (Volatile Instance Stores) may

also be leveraged on the consumers to gain speed advantages. Finally, consumers could

leverage spot instances to reduce overall processing costs. In this case, messages must fall

back to the queue if an instance is terminated.

Figure 1| EC2 Instance Type and Sizes

Recovering from Failure

To support recovery, the consumer process should work to delete or move the raw data to a

processed area on the shuttle once a task has been processed.

As noted, queued volumes that are being processed have a timeout set, such that they will go

back to the queue if that timeout has been exceeded. The most likely situation for a timeout

to be exceeded if using spot instances is that the instance gets terminated if outbid by another

Tick Data Inc.- ShuttleServiceTM June 2015

Page 6 of 14 Copyright© TICK DATA, LLC

AWS user. After the timeout, the volume-id will be revisable to other consumers to continue

work. If the consumer moves or deletes the raw sub-work unit once completed, the next

consumer to pick the volume off the queue will pick-up the work where the previous

consumer left off, and not start from the start.

Figure 2 | SQS Window Showing Visibility Timeout

Improving Performance and Cost Efficiency

Spot instances are an exciting way to enhance the cost efficiency of the process. These

instances can be found at significantly reduced prices to reserved instances.

Example: List price for a RESERVED c3.8xlarge Amazon Linux AMI: ~$1.68/hr.

Figure 3| Sample On-Demand Price c3.8xlarge

Spot pricing for the same instance type: ~0.33/hr.

Tick Data Inc.- ShuttleServiceTM June 2015

Page 7 of 14 Copyright© TICK DATA, LLC

 Figure 4| Sample Spot Pricing graph c3.8xlarge

As can be seen the spot price fluctuates. For a spot instance a maximum price to pay per hour

is selected. If the current price exceeds the maximum chosen, the instance terminates with

no warning. As such, a recovery from failure strategy is essential.

Scaling Up

To support the producer/consumer model, creating consumers on demand to handle load

is essential to the fast processing of data. Care must be taken in the configuration of the

Auto Scaling Service to maximize performance and throughput. When CloudWatch triggers

an alarm (“Too many messages in the queue”), the Auto Scaling Service will execute its scale

up policy. If the scale up policy deploys “On Demand” instances*, the instances are fulfilled

within moments. The instances will start quickly and begin to handle the work load.

However, if the scale up policy is set to use “Spot” instances, the policy will request a spot

instance. Spot instance requests are then placed in a queue and vetted. If the request is

successfully vetted, i.e. the spot price is below the current spot price, the instance will be

placed in another queue to be fulfilled. The time between a spot request and a spot instance

coming online can be as much as 15 minutes. Because of this delay, it is generally beneficial

to request 2 or more instances at a time during a scale up event.

Tick Data Inc.- ShuttleServiceTM June 2015

Page 8 of 14 Copyright© TICK DATA, LLC

Figure 5| Auto Scaling Service - Policies

Scaling down is also essential. Consumer tasks must be stopped when there is not work load,

or they will continue to run. In the above case, when there are no available messages for a

4hr period, the group will begin to scale down. It is proper practice to scale up quickly (in

the above situation, start 2 instances after 5 min breach) and scale down slowly. Scaling

down too quickly can lead to a bottleneck if there is any gap delay in the producer sending

data.

Tick Data Inc.- ShuttleServiceTM June 2015

Page 9 of 14 Copyright© TICK DATA, LLC

Figure 6| Scaling up for load

Reducing the Risk of Change

Deploying AMI instances for consumers would be the fastest way to get the consumers up

and running. The AMI would be a pre-configured instance with all software pre-installed and

would start and begin executing quickly. However, the downside of an AMI would be to

rework / rebuild and re-test the AMI anytime a change is required. That change could consist

of an operating system patch, software change, no matter how small, or other configuration

change. To reduce the risks involved with change, the use of user-data in the Launch

Configuration to deploy software from S3 onto the instance can mitigate impact of change.

Having the executable code stored in S3, with configuration scripts as well as a deployment

script, any changes to any of these modules can be contained to just the module and testing

can be done quicker. The Launch Configuration can be setup with a simple user-data script.

Tick Data Inc.- ShuttleServiceTM June 2015

Page 10 of 14 Copyright© TICK DATA, LLC

Figure 7|Launch Configuration with User data

Utilizing this strategy, changes only need to be made to the contents of the cloudDataInit.sh

script, rather than the AMI and / or the Launch Configuration.

Responsive Design

Tick Data harnessed the power and flexibility of its proprietary task-based

architecture. Tasks are individual work items that can be easily chained into profiles. This

approach allows for tasks to be individually written and introduced into the process. Tasks

additionally support sub-tasks and proper exception handing to allow for clean software

development. Simple configuration files allow for complete control of tasks, sub-tasks and

variables to be used during execution of tasks.

Monitoring

During execution, Cloud Watch allows for monitoring tools of the solution. Monitoring

should be done for both CPU capacities of the consumers as well as disk bandwidth for the

volumes.

Tick Data Inc.- ShuttleServiceTM June 2015

Page 11 of 14 Copyright© TICK DATA, LLC

To ensure the most efficient performance, CPU should be targeted at 90+%. As new

consumers come online, they should ramp up to the 90% level quickly and maintain. If the

CPU is falling below 70%, it is likely that either the wrong instance size has been

considered, or the consumer task has not been tuned to utilize the processors available. In

an example, utilizing c3.4xlarge instances (16 core), consumer CPU usage should reflect

figure 8. As the producer places workload onto the queue, the consumers grab it and spin to

~90% immediately.

Figure 8 | Consumer CPU Usage

Monitoring of volume metrics, consider the read or write bandwidth and throughput. If the

workload is similar, all volumes should be performing at level. Look for abnormalities. They

can be a sign of a weak hardware link. If a hardware volume is not performing to speed, the

efficacy of the task will be lost to the rate determining step. In these examples, figure 9 shows

properly performing volumes, where figure 10 shows a particular volume that is impaired.

Tick Data Inc.- ShuttleServiceTM June 2015

Page 12 of 14 Copyright© TICK DATA, LLC

Figure 9 | Healthy volume performance

Figure 10 | Single Unhealthy Volume - vol-b35e0858

Tick Data Inc.- ShuttleServiceTM June 2015

Page 13 of 14 Copyright© TICK DATA, LLC

Costs and Time

ABC required this job be completed in 5 days following receipt of data and approval of data

scripts. As such, we benchmarked the time required to parse one tb and scaled the project

accordingly. 20 instances were required to accomplish the task. We took advantage of cheap

spot market pricing to further reduce costs.

Storage Costs
EBS Data Storage (50 tb for 2 weeks) $ 2,250
$0.10/tb per month

Processing Power
20 Spot Instances (5 days @ 24 hours each) $ 500
$0.17 - $0.25/hr

Data Egress Costs (transfer output data from AWS) $ 270
3tb @ $0.09/gb

Tick Data Fees
50 tb Data Processing $ x
Algorithm Development, Testing, and QA $ x

Total $ x

Total Cost per terabyte $ x/tb

Tick Data Inc.- ShuttleServiceTM June 2015

Page 14 of 14 Copyright© TICK DATA, LLC

Summary

Using custom code, Tick Data’s extensive data processing libraries, and the AWS bottom layer

infrastructure a high level system named ShuttleService™ was configured and built. The

system is highlighted by the clever coupling of several subsystems and the application of

expert AWS knowledge allowing configuration throughout several different features of the

AWS services. Tick Data, Inc. has leveraged all the pieces that Amazon AWS has in place to

build a high powered multi-instance / multi-processing data processing and data distribution

system. ShuttleService™ helps tie them together into an elegant solution that can be

leveraged into an existing production system cost effectively without over taxing the current

production systems output and performance. At the same time, it allows for high volume

processing and analysis of data in new and different ways to produce a unique view.

In the case of ABC we performed all of the processing in our AWS environment. We could

have designed and built an AWS instance for ABC; handing over keys at completion of the

data processing for ABC’s future use. This decision is largely a function of the expected

repetitive nature of the process.

Please contact Tick Data at sales@tickdata.com for additional information on this project or to
inquire about Tick Data assisting you in processing large data sets to your specifications.

